Targeted Influential Nodes Selection in Location-Aware Social Networks
نویسندگان
چکیده
منابع مشابه
Identification of Influential Nodes in Social Networks
Understanding and controlling spreading dynamics in networks presupposes the identification of those influential nodes that will trigger an efficient information diffusion. It has been shown that the best spreaders are the ones located in the core of the network – as produced by the k-core decomposition. In this paper we further refine the set of the most influential nodes, showing that the nod...
متن کاملThe Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملDiscovering Influential Nodes in Social Networks through Community Finding
Finding influential nodes in a social network has many practical applications in such areas as marketing, politics and even disease control. Proposed methods often take greedy approaches to find the best k nodes to activate so that the diffusion of activation will spread to the largest number of nodes. In this paper, we study the effects of using a community finding approach to not only maximiz...
متن کاملCommunity Detection in Social Networks Based on Influential Nodes
Large-scale social networks emerged rapidly in recent years. Social networks have become complex networks. The structure of social networks is an important research area and has attracted much scientific interest. Community is an important structure in social networks. In this paper, we propose a community detection algorithm based on influential nodes. First, we introduce how to find influenti...
متن کاملInfluential Nodes in a Diffusion Model for Social Networks
We study the problem of maximizing the expected spread of an innovation or behavior within a social network, in the presence of “word-of-mouth” referral. Our work builds on the observation that individuals’ decisions to purchase a product or adopt an innovation are strongly influenced by recommendations from their friends and acquaintances. Understanding and leveraging this influence may thus l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2018
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2018/6101409